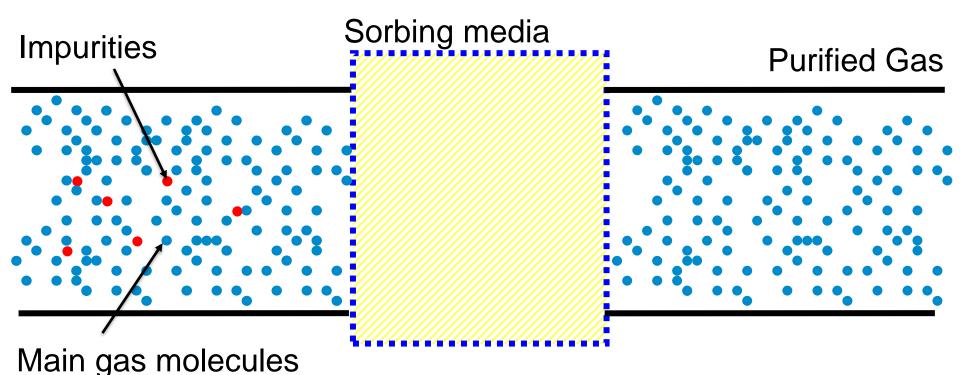
INTRODUCING....


Frank Bazelmans f.bazelmans@teesing.com Mike Gijsbertse m.gijsbertse@teesing.com

TOPICS TO COVER

- Introduction
- Gas Purification concept
- Technologies:
 - Getter
 - Reactive Catalyst
 - Catalytic
 - Adsorbers
- Media, Gas and Impurities table
- Bulk Purifiers
- Factors affecting cost
- Other topics to discuss

GAS PURIFICATION CONCEPT

- Sorbing (purification) media do not react with main gas molecules
- Gaseous impurities react and are trapped into the sorbing media and removed from the main gas stream

PURIFIER EXAMPLES

MULTIPLE PURIFICATION TECHNOLOGIES

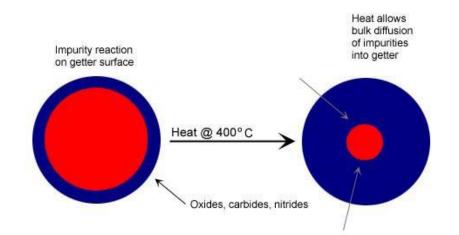
Alloy Getters

Typically Removes: CO, CO₂, H₂, H₂O, N₂, O₂, THC

Catalysts/ Reactive Catalysts

Typically Removes: CO, CO₂, H₂, H₂O, O₂, NMHC

Asorbants/Adsorbers


Typically Removes: H₂0, CO₂, NMHC

TECHNOLOGIES - GETTER

Zirconium Alloys

• Highly reactive with a variety of gas species CO, CO2, N2, O2, H2

- Reactions occur on the surface, products diffuse into the bulk, but only under heated atmosphere.
- Hydrogen is reversibly dissolved into solution in the getter, as a function of temperature...cold=more capacity, hot = less capacity.

TECHNOLOGIES - GETTER

Zirconium Alloys

Advantages

- Best low temp technology that can remove N2 from inert gases
- Can be Nitrided or Hydrided for purifying N2, H2, and mixtures

Disadvantages

- Not regenerable, only replaceable
- Classed dangerous goods, spontaneously combustible
- High temperature operation (350 C), higher operational costs

TECHNOLOGIES - GETTER

Zirconium Alloys

Applications

- Silicon & Silicon Carbide crystal growth Argon
- Sputtering PVD Argon/Nitrogen
- Analytical Instruments -- zero gas
- Optical Fiber Mfg-Helium

TECHNOLOGIES – REACTIVE CATALYST

Reactive Catalysts

- Transition metals; examples include Nickel and Copper
- Typically a high surface area metal deposited on inert substrates (alumina, silica, fluid purification/diatomaceous earth)
- Highly reactive with a variety of gas species
 - CO, CO2, H2, H2O, O2
- Reactions are surface area dependent

TECHNOLOGIES – REACTIVE CATALYST

Reactive Catalysts

Advantages

- Operates efficiently at ambient temperatures
- Low COO as compared to getter technology
- Can be conditioned for purifying H2, wide gas compatibility (CO2, Halogens, Corrosives)
- Works with a wide range of gases, CO2, halogens, some corrosive and hydride gases

Disadvantages

- Limited capacity to remove light Hydrocarbons
- Classed dangerous goods, spontaneously combustible

TECHNOLOGIES – REACTIVE CATALYST

Reactive Catalysts

Applications

- Any Inert gas not requiring N2 or light Hydrocarbon (Methane) removal
- Nitrogen gas purification for venting purging applications
- Hydrogen use not requiring light Hydrocarbon (Methane) removal

TECHNOLOGIES – CATALYTIC

Catalyst

- Palladium/Platinum
- THINK--CATALYTIC CONVERTER!

- Low percentage of high surface area metal deposited on inert substrate
- Used to reduce THC, CO, H2, etc. from high PPM levels to low PPT levels
- True catalyst
 - Not consumed

TECHNOLOGIES – CATALYTIC

Catalyst

Advantages

- No definitive lifetime
- No regeneration required
- Efficient removal of THC with no risk of exothermic reaction
- Many applications (CDA, CO2, O2, Noble Gases, etc)

Disadvantages

- Operates at elevated temperature
- Requires downstream adsorbers to remove byproduct impurities
- High capital expenditure, and high COO

TECHNOLOGIES – CATALYTIC

Catalyst

Applications

- UHP O2 applications
- Hydrocarbon removal from O2

TECHNOLOGIES – ABSORBERS

Absorbers

- Molecular sieves, silica gel, carbon (charcoal)
- Highly efficient for certain impurities
 - CO2, H2O, Acids, Bases, Heavy Hydrocarbons, etc.
- Removes impurities through physical adsorption
 - Pore size dependent
- Reactions occur on the surface with no diffusion into the bulk
 - Highly porous to increase surface area

"OX" Purifier is an example

TECHNOLOGIES – ABSORBERS

Absorbers

Advantages

- Operates efficiently at ambient temperatures
- Regenerable

Disadvantages

- Will not remove light Hydrocarbons (Methane)
- Some are NOT regenerable


TECHNOLOGIES – ABSORBERS

Absorbers

- Nearly any gas where moisture is the primary impurity to be removed
- Calibrated, or "Zero" gas for instrumentation
- Efficiently removes acids and bases
- Optical component purging

MEDIA, GAS AND IMPURITIES

Class	Gases Purified	Impurities removed	Removal efficiency	•
С	Ar, He, Kr, Ne, Xe, N ₂ , H ₂	CO, CO ₂ , H ₂ , H ₂ O, NMHC, O ₂	< 100 PPT	Yes
CA	Ar, He, Kr, Ne, Xe, N ₂ , H ₂	CO, CO ₂ , H ₂ , H ₂ O, NMHC, O ₂	< 100 PPT	Yes
F	C ₂ F ₆ , C ₃ F ₈ , C ₄ F ₈ , CCIF ₃ , CCI ₂ F ₂ , CCI ₄ , CF ₄ , CHCIF ₂ , CHF ₃ , CH ₃ F	CO, CO ₂ , H ₂ , H ₂ O, NMHC, O ₂	< 100 PPT	No
ОХ	CDA, O ₂	CO ₂ , H ₂ O, NMHC, Amines, NOx	< 100 PPT	Yes
Т	BCI ₃ , BF ₃ , CL ₂ , CIF ₃ , F ₂ , HBr, HCI, HF, NF ₃ , SF ₄ , WF ₆	H ₂ O	< 100 PPT	No
W	Ar, He, Kr, Ne, Xe, H ₂ , N ₂	H ₂ O	< 100 PPT	Yes

GAS BEING PURIFIED

Not all gases that can possibly be purified with a given Class are listed. If you don't see your specific used gas, please contact Teesing.

• Never use purifier for a gas not specified in the model number without contacting Teesing first.

WHAT INFORMATION DO WE NEED

- Gas to be purified some gases don't react well to some medias
- Impurities in the gas stream specifically which to be removed
- Inlet gas purity typically limited to 5Ns or better
- Nominal flow rate used in lifetime calculations, vessel sizing
- Purifier duty cycle used in lifetime calculations, vessel sizing
- Max flow rate vessel size, filtration options
- Max line pressure vessel design, system component specs
- Line diameter match with purifier to minimize pressure drop
- Desired outlet purity used in lifetime calculations, vessel sizing
- Particle filtration two options that impact max flow and pressure
 drop

SELECTION GUIDE

Physical aspects

- Diameter and length varies with nominal flow rates
- Inlet/outlet fittings
 - VCR is standard
 - Some purifier sizes offer optional sizes of VCR fittings
 - Weld stubs are optional
- Integral particle filtration
 - Sintered metal filter discs or sintered rod type filters are used to contain the media in the vessel
 - Inlet filters are always 0.1nm rated
 - Outlet filters can be either 0.1nm (-CR in the model number) or 0.003nm (-FP in the model number)

BULK PURIFIERS

- 5Ns Inlet Purity Producing 9Ns or Better Outlet Purity
- PLC Automation, Optional Internet Connectivity for Upgrades, Service
- Menu Driven Touchscreen HMI, Multi-Level Password Access
- Versions for Protected or Unprotected Area
 Installation
- For Flow Rates to >5000 NM3/hr

BULK PURIFIERS

FACTORS AFFECTING COST

Vessel sizing

- Stand alone purifiers lifetime target is 1 year between regen / replacement
- Larger flow rates = larger vessels to meet purity requirements
- Higher inlet impurity load = larger vessel to meet purity requirement
- Nominal flow rating = 1 yr of 24 h/d operation at 5Ns inlet purity

Required flow rate

- Larger vessels required to handle larger flows
- Larger line diameter = higher cost components like valves, fittings etc

FACTORS AFFECTING COST

Smaller particle filtration

 Costs more, also may require larger vessels due to max flow specs per filter

Uninterrupted flow requirement

 May lead to dual vessel fully auto regen to eliminate downtime for vessel change out/factory regen

OTHER TOPICS TO DISCUSS

Lifetime of purifiers / Regeneration methods (can you do it yourself?)

Thank you for your attention!

Frank Bazelmans f.bazelmans@teesing.com Mike Gijsbertse m.gijsbertse@teesing.com